
1

DATA STRUCTURES (SMCS33)

UNIT - I

CHAPTER - 1

BASIC CONCEPTS

ALGORITHM SPECIFICATION

Introduction

The concept of an algorithm is fundamental to computer science.

Definition:

An algorithm is a finite set of instructions that, if followed, accomplishes a particular task. In

addition, all algorithms must satisfy the following criteria:

1. Input. There are zero or more quantities that are externally supplied.

2. Output. At least one quantity is produced.

3. Definiteness. Each instruction is clear and unambiguous

4. Finiteness. If we trace out the instructions of an algorithm then for all cases, the

algorithm terminates after a finite number of steps.

5. Effectiveness. Every instruction mu7st be basic enough to be carried out, in principle,

by a person using only pencil and paper. It is not enough that each operation be

definite as in (3); it also must be feasible.

We can use a natural language like English, also.

Example [Binary search]: Assume that we have n ≥ 1 distinct integers that are already sorted

and stored in the array list. That is, list [0]≤ list [1]≤ …≤ list [n-1]. We must figure out if an

integer seachnum is in this list. If it is we should return an index, i, such that list[i] =

searchnum. If searchnum, isnot present, we should return- 1. Since the list is sorted we may

use the following method to search for the value.

Let left and right, respectively, denore the left and right ends of the list to be searched.

Initially. left = 0 and right= n-1. Let middle = (left+right)/2 be the middle position in the list.

If we compare list with seachnum,we obtain oe of three reults:

1. searchnum < list [midddle]. In this case, if searchnum is present, it must be in the

positions between 0 and middle – 1. Therefore,we set return middle.

2

2. searchnum = list [middle]. In this case, we return middle.

3. searchnum > list [middle].In this case, if searchnum is present, it must be in the positions

between middle + 1 and n-1. So, we set left to middle + 1.

include < stdio.h>

include <math.h>

#define MAX_SIZE 101

#define SWAP(x,y,t) = ((t) = (x), (x)= (y), (y) = (t))

void sort (int [], int); / *selection sort*/

void main (void)

{

int i, n;

int list[MAZ _ SIZE];

printf (“ Enter the number of numbers to generate: “);

scanf(“%d “, &n)‟

if (n < 1 ll n> MAX_size) {

fprintf(stderr, “ Improper value of n\n”);

exit (EXIT_ FALLURE);

}

for (i= 0; i<n; i++) {/* randomly generate numbers*/

list [i] = rand () % 1000;

printf(“% d “, list[i];

}

sort (list,n);

3

printf(“ \n Sorted array:\n”);

for (i= 0; i< n; i++)/* print out sorted

numbers*/ Printf(“% d “, list[i]);

printf(“\n”);

}

void sort (int list[], int n)

{

int I, j, min, temp;

for (i=0; i<

n-1; i++) {

min = I;

for

(j=i+1; j<

n; j++) if

(list[j] <

list[min])

min= j;

SWAP (list[i], list [min], temp);

}

}

Basic concepts

If searchnum has not been found and there are still integers to check, we

recalculate middle and continue the search. Program 1.5 implements this searching

strategy. The algorithm contains two subtasks: (1) determining if there are any

integers left to check, and (2) comparing seachnum to list [middle].

While (there are more integers

to check){ Middle = (left

+right)/2;

If (searchnum < list [middle])

4

Return middle;

Else left= middle+1;

Program : Searching a sorted list

We can handle the comparisons through either a function or a macro. In either case,

we must specify values to signify less than, equal, or greater than. We will use the strategy

followed in C‟ s library function:

 We return a negative number (-1) if the first number is less than the second.

 We return a 0 if the two numbers are equal.

 We return a positive number (1) if the first number is greater than the second.

Although we present both a function (program 1.6) and a macro, we will use the macro

throughout the text since it works with any data type.

Int compare (int x, int y)

{/* compare x and y, return -1 for less than, 0 for equal,

1 for greater*/

If (x< y) return -1;

Else if (x = = y) return 0;

Else return 1;

Int binsearch (int list [], int searchnum, int left,

int right)

{/* search list [0] < = list [1] <=… <= list [n-1] for

searchnum. Returnits position if found. Otherwise

return – 1* /

int middle;

5

while (left< = right) {

middle = (left + right)/2;

switch (COMPARE (list [middle], seachnum)){

case -1 : left = middle + 1;

break;

case 0 : return middle;

case1 : right = middle – 1;

}

}

return -1;

}

The search strategy just outlined is called binary search. The previous examples have

shown that algoriths are implemented as functions in C. Indeed functions are the primary

vehicle used to divide a large program into managea ble pieces.

They make the program easier to read, and, because the functions can be tasted separately,

increase the probability that it will run correctly.

Recursive Algorithms

Typically, beginning programmers view a function as something that is invoked (called) by

another function. Functions can called themselves (direct recursion) or they may call other

functions that invoke the calling function again(indirect recursion). These recursive

mechanisms are not only extremely powerful, but they also frequently alllow us to express an

otherwise complex process in very clear terms.

Int binsearch (int list [], int searchnum, int left,

int right)

{/* search list [0] < = list [1] <=… <= list [n-1] for

6

searchnum. Returnits position if found. Otherwise

return – 1* /

int middle;

if (left< = right) {

middle = (left + right)/2;

switch (COMPARE (list [middle], seachnum)){

case -1 : return

binsearch (list, searchnum, middle + 1, right);

case 0 : return middle;

case 1: return

binsearch (list, searchnum, left, middle -1);

}

}

return -1;

}

The factorial function n ! has value 1 when n ≤ 1 and value n* (n-1)! When n> 1. Write

both a recursive and an iterative C function to compute n!.

The Fibonacci numbers are defined as : f 0 = 0, f1= 1, and f i = f i -1 + f i-2 for i >1.

Write both a recursive and n iterative C function to compute f i.

DATA ABSTRACTION

All programming languages provide at least a minimal set of predefined data types, plus the

ability to construct new, or user – defined types. It is appropriate to ask the question, “ what

is a data type?”

7

Definition: A data type is a collection of objects and a set of operations that act on those

object.

Whether your program is dealing with predefined data types or user- defined data types, these

two aspects must be considered: objects and operations.

It has been observed by many software designers that hiding the representation of objects of a

data type from its users is a good design strategy. In that case, the user is constrained to

manipulate the objects solely through the functions that are provided.

Definition: An abstract data type (ADT) is a data type that is organized in such a way that

the specification of the objects and the specification of the operations on the objects is

separated from the representation of the objects and the implementation of the operations.

Some programming languages provide explicit mechanisms to support the distinction

between specification and implementation. For example, Ada has a concept called a package,

and C++ has a concept called a class. Both of these assist the programmer in implementing

abstract data types.

How does the specification of the operations of an ADT differ from the implementation of

the operations? The specification consists of the names of every function, the type of its

arguments, and the type of its result. There should also be a description of what the function

does, but without appealing to internal representation or implementation details. This

requirement is quite important, and it implies that and abstract data type is implementation –

independent.

ADT Natural Number is

Objects: an ordered subrange of the integers starting at zero and ending at the maximum

integer (INT _ MAX) on the computer

Functios:

For all x,y € Natural Number, TRUE, FALSE € Boolean

And where +, -, <, and == are the usual integer operations

Natural Number Zero(_ : := 0

Boolean IsZero() ::= if (x) return False else return True

8

Booleaqn Equal (x,y) ::= if (x==y) return truee else return false

Natural Number Successor(x) ::= if (x == INT_ MAX) return x

Else return x+1

Natural Number Add (x,y) ::= if ((x+1) < = INT _ MAX) return x + y

Else return int_max

Natural Number Subtract (x,y) ::= if (x < y) return 0

Else return x – y

End Natural Number

PERFORMANCE ANALYSIS

There are many criteria, upon which we can judge a program, including:

1. Does the program meet the original specifications of the task?

2. Does it work correctly?

3. Does the program contain documentation that shows how to use it and how it works?

4. Does the program effectively use functions to create logical units?

5. Is the program‟s code readable?

Although the above criteria are vitally important particularly in the development of large

systems , it is difficult to explain how to achieve them. The criteria are associated with the

development of a good programming style and this takes experience and practice. We also

can judge a program on more concrete criteria, and so we add two more criteria.

These criteria focus on performance evaluation, which we can loosely devide into two

distinct fields. The first fields focuses on obtaining estimates of timer and space that are

9

machine independent. We call this field performance analysis, but is subject matter is the

heart of an important branch of computer science known as complexity theory. The second

field, which we call performance measurement, obtains machine-dependent running times.

Definition: The space complexity of a program is the amount of memory that it needs to run

to completion. The time complexity of a program is the amount of computer time that it

needs to run to completion.

Space Complexity

The space needed by a program is the sum of the following components:

1. Fixed space requirements: This component refers to space requirements that do not

Depend on the number and size of the program‟s inputs and outputs. The fixed requirements

include the instruction space (space needed to store the code), space for simple variable‟s

fixed- size structured variables(such as structs) and constants.

This component consists of the space needed by structured variables whose size

depends on the particular instance, I, of the problem being solved. It also includes the

additional space required when a function uses recursion. The variable space requirement of a

program P working on an instance I is denoted Sp (I).

We can express the total space requirement S(p) of any program as:

S(P)= c + Sp(I)

Where c is a constant representing the fixed space requirements.

Time Complexity

The time, T(P), taken by a program, P, is the sum of its compile time and its run (or

execution) time. The compile time is similar to the fixed space component since it does not

depend on the instance characteristics, we are really concerned only with the program‟s

execution time, Tp.

Determining Tp is not an easy task because it requires a detailed knowledge of the

compiler‟s attributes. That is, we must know how the compiler translate our source program

into object code.

10

That are performed when the program is run with instance characteristic n.

Asymptotic Notation (OΩθ)

Our motivation to determine step counts is to be able to compare the time complexities of two

programs that compute the same function and also to predict the growth in run time as the

instance characteristics change.

Determining the exact step count(either worst case or average) of a program can

prove to be an exceedingly difficult task. Expending immense effort to determine the step

count exactly isn‟t very worthwhile endeavor as the notion of a step is itself inexact. (Both

the instructions x = y and x=y+z+(x/y) + (x*y*z*-x/z) count as one step.) Because of the

inexactness of what a step stands for, the exact step count isn‟t very

Void prod (int a [] [MAX SIZE], int b[] [MAX SIZE],

Int c[] [MAX SIZE], int rowsa, int colsb int colsa)

{

Int I, j, k;

For (i = 0; I < rowsa; i ++)

For (j =0; j< closb; j++)

{

C[i] [j] = 0;

For (k = 0; k< colsa; k++)

C[i] [j]+ = a [i] [k] * b [k] [j];

}

}

Program 1.21: Matrix product function

Void transpose (int a[] [MAX _ SIZE])

{

11

Int i, j, temp;

For (I = 0; i< MAX SIZE - 1; i++)

For (j = i+1; j< MAX SIZE; j++)

SWAP (a [i] [j], a[j] [i], temp;

Definition: [Big „ oh‟] f (n) = O (g(n)) (read as „ „ f of n is big oh of g of n‟) iff (if and

only if) there exist positive constants c and n 0 such that f(n) ≤ cg (n) for all n,n ≥ n0.

As illustrated by the previous example, the statement f(n) = O(g(n)) only states that

g(n) is an upper bound on the value of f(n) for all n,n ≥ n0.

Definition: [Omega] f(n) = Ω(g(n)) (readas „ f of n is omega of g of n‟) iff there exist

positive constants c and n0 such that f(n) ≥ cg (n) for all n,n≥ n0.

The theta notation is more precise than both the „ big oh‟ and omega notations.

f (n) = Ө(g(n)) iff g (n) is both an upper and lower bound on f(n).

12

CHAPTER 2

ARRAYS AND STRUCTURES

ARRAYS

We begin our discussion by considering an array as an ADT. An array is a set of

pairs, < index, value>, such that each index that is defined has a value associated with it. In

mathematical terms, we call this a correspondence or a mapping.

ADT Array is

Objects: A set of pairs< index, value > where for each value of index. There is a value fro, the

set item. Index is a finite ordered set of one or more dimensions, for example, { 0,…, n-1 }

for oe dimension, {(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2) for twp dimensions, etc.

Functions:

For all A€ Array, i € index, x € item, j, size € integer

Array Create (j, list) ::= return an array of j dimensions where list is a j- tuple whose ith

element is the size of the ith dimension. Items are undefined.

Item Retrieve (A,i) ::= if (I in index) return the items associated with index value I in array

A else return error

Array Store (A,i,x) ::= if (i in index)

Return an array that is identical to array A except the new pair <I,x>

has been inserted else return error.

ADT: Abstract Data Type Array

Returns the value associated with the index if the index is valid, or an error if the

index is invalid. Store accepts an array, an index, and an item, and returns the original array

augmented with the new < index, value> pair. The advantage of this ADT definition is that it

clearly points out the fact that the array is a more general structure than “a consecutive set of

memory locations.”

13

POLYNOMIALS

The Abstract Data Type

Array are not only data structures is their own right, we can also use them to implement other

abstract data types. For instance, let us consider one of the simplest and most commonly

found data structures: the order or linear list.

 Day of the week: (Sunday, Monday, Tuesday, Wednesday, Thursday, Friday,

Saturday)

 Values in a deck of cards: (Ace, 2,3,4,5,6,7,8,9,10,Jack,Queen,King)

 We can perform many operations on lists, including:

 Finding the length, n, of a list.

 Regarding the items in a list from left to right (or right to left).

 Retrieving the ith item from a list, 0≤ in < n.

 Replacing the item in the ith position of a list, 0 ≤ in < n.

 Inserting a new item in the ith position of a list, 0 ≤ in < n. The items previously

numbered I, i+1,…, n-1 become items numbered I, i+1,.., n-2.

The most common implementation is to represent an ordered list as an array where we

associate the list element, item i, with the array idex i. WE call this a sequential mapping

because, assuming the standard implementation of an array we are storing item I, item i+1

into consecutive slots i and i+1 of the array. Sequential mapping works well for most of the

operations listed above. Thus, we can retrieve an item, replace an item, or find the length of a

list, in constant time. We also can read the items in the list, from either direction, by simply

changing subscripts in a controlled way. Only insertion and deletion pose problems since the

sequential allocation forces us to move items so that the sequential mapping preserved.

Viewed from a mathematical perspective, a polynomial is a sum of terms, where each

term has a form axe, where x is the variable, a is the coefficient and e is the exponent. Two

example polynominals are:

A (x) = 3x 20+2x5+ 4 and B (x) = x4 + 10x3+ 3x 2+1

14

The largest (or leading) exponent of a polynomial is called its degree. Coefficients

that are zero are not displayed. The term with exponent equal to zero does not show the

variable since x raised to a power of zero is 1.

Polynominal Representation

We are now ready to make some representation decisions. A very reasonable first

decision requires unique exponents arranged in decreasing order. This requirement

considerably simplifies many of the operations.

This algorithm works by comparing terms from the two polynominals until one or

both of the polynomials becomes empty. The switch statement performs the comparisons and

adds the proper term to the new polynomial, d. if one of the polynominals becomes empty, e

copy the remaining terms from the nonempty polynomial into d. With these insights, we now

considered the representation question more carefully.

ADT Polynomial is

Objects: p(x) = a 1 x e1 +… + anxen; a set of ordered pairs of < ei, ai> where a I in Coefficients

and ei in Exponents, ei are integers >=0

Functions:

For all poly, poly 1, poly 2€ Polynomial, coef € Coffucients, expon € Exponents

Polynomial Zero () ::= return the polynomial, p (x) =0

Boolean Is Zero (poly) ::= if (poly) return FALSE else return TRUE

Coefficient Coef (poly, expon) ::= if (expon € poly) retrun is cofficient else return

zero

Exponent Lead Exp (poly) ::= return the largest exponent in poly

Polynomial Attach (poly, coef, expon)::= if(expon € poly) return error else return the

polynomical poly with the term<coef, expon>

inserted

15

Polynomial Remove (poly,expon) ::= if (expon € poly) return the polynomical poly

with the term whose exponent is expon deleted

else return error

Polynomial Single Mult(poly, coef, expon) ::= return the polynomial poly. coef. X expon

Polynomial Add (poly 1, poly 2) ::= return the polynomial poly 1+ poly 2

polynomial Mult (plly 1, poly 2) := return the polynomial poly 1 poly 2

Polynomical Addition

We would now like to write a C function that adds two polynomials, A and B,

represented as above to obtain D = A+B. To produce D(x), padd adds A (x) and B (x) term by

term.

Function to add two polynomials

Analysis of Padd:

Since the number of nonzero terms in A and B are the most important factors in the

time complexity, we will carry out the analysis using them. Therefore, let m ad n be the

number of nonzeroterms in A and B, respectively. If m > 0 and n> 0, the while loop is

entered. Each interation of the loop requires o (1) time. At each iteration, we increment the

value of start A or start B or both. Since the iteration terminates

Void attach (float coefficient, int exponent)

{ /* add a new term to the polynomial*/

if(avail > = MAX _TERMS) {

fprintf (staderr,” Too many terms in the polynomial \n”);

exit (EXIT _ FALLURE);

}

terms [avail]. Coefficient;

terms [avail ++]. expon = exponenet;

16

𝑖=0
𝑖=0

Function to add a new term

When either start A or start B exceeds finish A or finish B, respectively, the number of

iterations is bounded by m+n -1. This worst case occurs when:

A(x) = 𝑛 𝑥2𝑖 and B(x) = 𝑛 𝑥2𝑖 + 1

The time for the remaining two loops is bounded by O(n + m) because we cannot

iterate the first loop more than m times and the second more than n times. So, the asymptotic

computing time of this algorithm is O(n+m).

SPARSE MATRICES:

A general matrix consists of m rows and n columns of numbers. Such a matrix has sm

n elements. Matrices has many zero entries. Such a matrix is called sparse.

Ordinary Matrix Sparse Matrix

4 6 8

5 0 2

2X3

0 0 1

0 0 0

2X3

REFRESENTATION OF ARRAYS:

If an array is declared A(I1:u1,I2:u2 …., In:un), then it is easy to see that the number of

elements is

𝑛

 (𝑢1 − 𝐼𝑖 + 1)

1=1

One of the common ways to represent an array is in row major order. If we have the

declaration.

17

A (4:5, 2:4, 1:2, 3:4)

The two dimensional array (A1:u1), 1u2) may be interpreted as u1 rows : row1.

row2,…, each row consisting of u2 elements.

If α is the address of A(1,1), then the address of (A I, 1) is α + (I -1) u2, as there are

i - 1 rows each of size u2 preceding the first element in the i-th row. Knowing the address of

A(I -1), we can say that the address of A(I, I) is then simply α + (I, 1), we can say that the

address of A(I, 1) is then simply α + (i-1) u2 + (i - 1).

“Repeating in this way the address for A(i1, i2 ….Im…..) is

(b) Sequential row major representation of a 3-dimensional array. Each 2-dimensional array

is represented as in Figure

Sequential representation of A(u1,u2,u3)

α + (i1 - 1)u2 u3….un

+ (i2 - 1) u3 u4…un

+ (i3 - 1) u4 u5 …un

:

:

+ (in-1 - 1)un

+ (in - 1)

18

STACKS AND QUEUS

FUNDAMENTALS:

UNIT – II

CHAPTER - 3

A stack is an ordered list in which all insertions and deletions are made at one end,

called the top. a queue is an ordered list in which all insertions take place at one end, the rear,

while all deletions take place at the other end, the front.

The restrictions on a stack omply that if the elements A, B, C, D, E are added to the

stack, in that order, then the first element to be removed / deleted must be E. equivalently we

say that the last element to be inserted into the stack will be the first to be removed. For the

reason stacks are sometimes referred to as Last In First Out (LIFO) lists. The restrictions on a

queue require that the element which is inserted into the queue will be the first one to be

removed. Thus a is the first letter to be removed, and queues are known as First in First Out

(FIFO) lists.

Procedure Add (item, STACK, n, top):

*insert item into the STACK of maximum size n; top is the number of elements currently in

STACK*

if top = n then call STACK_FULL

top ←top + 1

STACK (top) ←item

end ADD

Procedure DELETE (item, STACK, top)

remove the top elements of STACK and stores it in item unless STACK is empty

if top = 0 then call STACK _EMPTY

item←STACK (top)

top←top – 1

end DELETE

Procedure ADDO (item.O.n. rear):

insert item into the queue represented in Q(1:n)

19

if rear= n then can QUEUE_ FULL

rear←rear + 1

Q (rear) ← item

end ADDQ

Procedure DELETE (item, Q, rear)

delete an element from a queue

front ← front + 1

item ←Q (front)

end DELETE

Circular Queue

Procedure ADDQ (item , Q, n, front, rear)

*insert item into the circular queue stored in Q(0:n-1); rear points to the last item and front is

one position, counter clock wise from the first item in Q*

rear← (rear +1) mod n *advanced rear clockwise*

if front ← rear then call QUEUE – FULL

Q (rear) item *insert new item*

end ADD

Procedure DELETEQ (item, Q, n, front, rear)

removes the front element of the queue 2(0:n-1)

if front = rear then call QUEUE _ EMPTY

front ←(front + 1) mod n*advanced front clockwise*

item ← Q(front) *set item to front of queue*

end DELETE

EVALUATION OF EXPRESSIONS:

An expression is made up of operands, and delimiters. For instance if A=4, B= C = 2,

D = E = 3, we might want x to be assigned the value

a. A/ (B**C) + (E*D) – (A*C)

4/(2**3) + (*3(-(4*2)

20

(4/4)+ 9-8

Result -2

b. ((A/B) ** (C +D)* (E-A) * C

(4/2) **(2+3) + (3-4) * 2

(4/2)** 5 * -1 *2

(2**)* -2

32* -2

Result = -64

If e is an expression with operators, he conventional way of writing e is called infix,

because the operators come in- between the operands, (Unary operators precede their

operand). The postfix from of an expression call for each operators to appear after its

operands. For example.

Ifix : A* B/C has postfix: AB * C/.

For example A* (B + C) * D has the postfix form ABC + * D*, and so the algorithm

Infix to Postfix:

Next Token Stack Output

None Empty None

A Empty A

* * A

(* A

B * AB

+ + AB

C + ABC

) * ABC+

* * ABC+*

D * ABC+* D

21

Done Empty ABC+* D*

22

The rule will be that operators are taken out of the stack as long as their in- stack

priority is p, is greater than equal to the incoming priority, icp of the new operator.

Procedure POSTFIX(E)

// Convent the infix expression E to postfix. Assume the last character of E is a „4‟ which will

also be the last character of the postfix. Procedure NEXT0TOKEN returns either the next the

operator, operand or delimiter- whichever comes next.

Stack (1:n) is the used as a stack and the character „4‟ with

ISP(/‟4‟)= - 1 is used at the bottom of the stack. ISP and ICP are functios.*

STACK (1)← („ – „4‟) ; top ←1* initialize stack*

X ←NEWZT – TOKEN (E)

Case

: x = „4‟ while top > 1 do * empty the stack*

Print(STACK)(top)); ←top – 1

End

Print („4‟)

Return

: x is an operand : print (x)

: x = „)‟ while STCACK (top)f‟(„ do *unstuck until‟(„*

Print (STACK (top)); top ← top-1

end

top ←top – 1 * delete‟(„*

:else while ISP (TACK(top)); ICP (x) do

Print (STACK(top)); top ← top – 1

end

call ADDS(x, STACK , n,top)* insert x in STACK*

end

forever

end POSTFIX

23

24

CHAPTER - 4

LINKED LISTS

SINGLY LINKED LISTS AND CHAINS

We studied the representation of simple data structures using an array and a sequential

mapping. These representations had the property that successive nodes of the data object

were stored a fixed distance apart.

When a sequential mapping is used for ordered lists, operations such as insertion and

deletion of arbitrary elements become expensive. For example, considered the following list

of three letter English words ending in AT:

(BAT, CAT, EAT, FAT, HAT, JAT, LAT, MAT, OAT, PAT, RAT, SAT,VAT,WAT)

To make this list complete we naturally ant to add the word GAT, which means gun

or revolver. If we are using an array and a sequential mapping to keep this list, then the

insertion of GAT will require us to move elements already in the list either one location

higher or lower. We mush move either HAT, JAT, LAT,…, WAT or BAT, CAT, EAT and

FAT.

Suppose we decide to remove the word LAT, which refers to the Latvian monetary

unit. Then again, we have to move many elements so as to maintain the sequential

representation of the list.

An elegant solution to this problem of data movement in sequential representations

is achieved by using linked representations. To access list elements in the correct order, with

each element we store the address or location of the next element in that list. Thus, associated

with each data item in a linked representation is pointer or like to the next item. In general, a

linked list is comprised of nodes; each node has zero or more data fields and one or more link

or pointer fields.

It is customary to draw linked lists as an ordered sequence of nodes with links being

represented by arrows, as in Figure 4.2. Notice that we do not explicitly put in the values of

the pointers but simply draw arrows to indicate they are there. The linked structures of

Figures 4.1 and 4.2 are called singly linked lists or chains. In a singly linked list, each node

has exactly one pointer field. A chain is a singly linked list that is comprised of zero or more

25

node. When the number of nodes is zero, the chain is empty. The nodes of a non- empty

chain are ordered so that the first node links to the second node; the second to the third; and

so on. The last node of a chain has a 0 link.

 data link

1 HAT 15

2

3 CAT 4

4 EAT 9

5

6

7 WAT 0

8 BAT 3

9 FAT 1

10

11 VAT 7

 .

.

.

.

.

.

Non sequential list- representation

First

Usual way to draw a linked list

0 WAT
….

EAT CAT BAT

26

It is easier to make insertions and deletions at arbitrary positions using a linked list

rather than a sequential list. To insert the data item Gat between FAT and HAT, the

following steps are adequate.

1. Get a node a that is currently unused.

2. Set the data field of a to GAT

3. Set the link field of a to point to the node after FAT, which contains HAT.

4. Set the link field of the node containing FAT to a.

 data link

1 HAT 15

2

3 CAT 4

4 EAT 9

5 1

6

7 WAT 0

8 BAT 3

9 FAT 5

10

11 VAT 7

LINKED STACK AND QUEUES:

Bothe the stack & queue are implemented as linked list

One can easily add a node at the top or delete one form the top. In figure 4.5 (b), one

can easily add a node at the rear and both addition and deletions can performed at the front.

Though for a queue we normally would not wish to add nodes at the front.

27

T(i) = Top of the stack

F(i)= Front of the queue

R(i)=Rear of the queue

Initial conditions:

T (i)=0

F(i) =0

Boundary conditions:

T(i)=0 iff stack i empty

F(i)=0 iff queue I empty

procedure DADDS(i,Y)

add element Y onto stack i

call GETNODE(X)

DATA(X) ←Y *store data value Y into new node*

LINK (X) ←T (i) * attach new node to top of i-th stack*

T(i) ←X * reset stack pointer*

end ADDS

procedure DELETE(i, Y)

add Y to the ith queue*

call GETNODE(X)

DATA (X) ← Y LINK (X) ←0

if F(i) = 0 then [F(i) ← R(i) ←(X) * the queue was empty*

else [LINK (R(i)) ← X]* the queue was not empty*

end ADDQ]

Procedure DELETE (i,Y)

delete the first node in the ith queue, set & to its DATA field

if F(i) = 0 then an QUEUE _ EMPTY

else (X← F(i): F(i) ← LINK(X)* set X to front node*

28

Y ← DATA(X) : CALL RET (X) *remove data and return node*

end DELETEQ

EXERCISES

1. Rewrite delete(Program 4.3) so that it uses only two pointers, first and trail.

2. Assume that we have a list of integers as in Example 4.2 Create a function that

searches for an integer, num. If num is in the list, the function should return a pointer

to the node that contains num. Otherwise it should return NULL.

ADDITIONAL LIST OPERATIONS

Operations For Circularly Linked Lists

By keeping a pointer last to last node in the list rather than to the firs, we are able to

inst an element at both the front and end with ease.

Program. Inserting at the front of a list

Int length (list pointer last)

{ / * find the length of the circular list last */

List pointer temp;

Int count = 0;

If (last) {

Temp = last;

Do {

Count + + ;

Temp = temp→link ;

} While (temp ! = last) ;

}

}

29

return count;

}

DOUBLY LUNKED LISTS AND STORAGE MANAGEMENT:

Double linked list is a two- way list, which can be traversed in two directions, in the

usual forward direction from the beginning of the list to the end or in the backward direction

from the end of the list to the beginning.

A node in a doubly linked list has at least 3 fields, say DATA, LLINK (left link) and

RLINK (right link). A double linked list may or may not be circular. A sample doubly linked

circular list with 3 nodes is given in figure.

Algorithm DDLETE deletes node X from list L.

Procedure DDLETE(X,L)

if X= L then call No_ MORE_NODES

* L is a list with at one node*

RLINK(LLINK(X)) ←RLINK(X)

LLINK (LLINK(X)) ← LLINK(X)

call RET(X)

end DDLETE

procedure DINSERT(P,X)

insert node P to the right of node X

LLINK (P) ← X *set LLINK and RLINK fields of node P*

RLINK(P) RLINK(X)

RLINK(X) P

end DINSERT

30

INTRODUCTION

UNIT – III

CHAPTER - 5

TREES

A tree is a finite set of one or more nodes such that

i. There is a specially designated node called the root

ii. The remaining nodes are portioned into n≥ 0 disjoint tress T1, T2,… Tn where each of these

sets is a tree. T1,… Tn, are also called subtrees of the root.

In the above definition a tree is defined in terms of trees. So, obviously it is a

recursive definition.

There are many terms which are often used when referring to trees. They are many

terms which are often used when referring to trees. They are defined one by one in the

following paragraphs.

A node stands for the item of information plus the branches to other items. The tree in

the following figure has 13 nodes, each item of data being a single letter for convenience.

The root is „A‟ and trees are normally drawn with the root at the top. The number of subtrees

of a node is called its degree. So, in the tree below, the degree of „A‟ is 3 of c is 1 and of F is

Zero. Nodes that have degree zero are called leaf or terminals nodes. Therefore,

{K,L,F,G,M,I,J} is the set of leaf nodes. The nodes with non- zero degrees are called non

terminals. The roots of the subtrees of a node, say X, are the children, of X. X is the parent of

its children. Thus the children of A are B, C and D. Also H,I and J are iblings. This

terminology care be extended so that, we can ask for the grandparent of a node which is the

parent of the parents of the node. For example grant of M is D.

The degree of a maximum degree of the nodes in the tree. For example the degree of

the above tree is 3. The ancestors of a node are all the nodes along the path from the root to

that node. The ancestors of M are A, D and H. the level of a node is defined by in initially

letting the root be at level 1. If a node is at level „n‟, then its children are at level „n+1‟. The

weight or depth of a tree is defined to be the maximum level of any node in the trees.

31

A forest is a set of n ≥ 0 disjoint trees. The nation of a forest is closely related to that

of a tree, because, if we remove the root of a tree we get a forest.

BINARY TREE:

A binary tree is a finite set of nodes which is either empty or consists of a root and

two disjoint trees called the left subtree and the right sub tree.

Example:

The maximum number of nodes on level „I‟ of a binary tree is 2 i-1, i> =1.

The maximum number of nodes in a Binary Tree of depth K is 2k-1, K> = 1.

BINARY TREE TRAVERSAL:

𝑘

 2𝑖 − 1 = 2𝑘 − 1

𝑖=1

When traversing a binary tree we want to treat each node and its subtrees in the same

fashion. If we let L, D, R, stand for moving left, printing the data, and moving right when at a

node then there are six possible combinations of traversal: LDR, LRD, DLR, DR, RDL, and

RLD. IF we adopt the convention that we traverse left before right then only three traversals

remain: LDR, LRD and DLR. To these we assign the names inorder, postorder and preorder

and preorder because there is a natural correspondence between these travels and producing

the infix, postfix and prefix forms of an expression.

Procedure INORDER(T)

T is a binary tree where each node has three fields L- CHILD. DATA, RCHILD if T f 0

then [call INORDER (LCHILD(T))

print (DATA(T))

call (INORDER (RCHILD(T))]

end INORDER

Output : A/B * *8 C* D + E

procedure PREORDER(T)

32

T is a binary tree where each node has three fields L-CHILD. DATA, RCHILD if T f0 then

[print (DATA(t))

call PREORDER(LCHILD(T))

call PREORDER (RCHILD(T))]

end PREODER

Output : + */A * * BCDE

procedure POST ORDER(T)

T is a binary tree where each node has three fields L-CHILD.DATA,RCHILD

if I f0 then [call POASTORDER (LCHILD(T))

call POSTORDER (RCHILD(T))

print (DATA(T))]

end POSTORDER

Output : A B C * * / D * E +

Iterative Inorder Treaversal

We can develop equivalent iterative functions for teunsive traversal. Let us take

inorder traversal as an example. To simulate the recursion, we must create our own stack.

A node that has no action indicates that the node is added to the stack, while a node

that has a Printf action indicates that the node is removed from the stock. Notice that the left

nodes are stacked until a null node is reached, the node is then removed from the stack, and

the node‟s right child is stacked. The traversal then continues with the left child. The traversal

is complete when the stack is empty.

Analysis of iterInorder: Let n be the number of nodes in the tree. If we consider the

action of iterInorder, we note that every node of the tree is placed on and removed from the

stack exactly once. So, if the number if nodes in the tree is n, the time complexity is O (n).

The space requirement is equal to the depth of the tree which is O(n).

Void iterInorder (treepointer node)

{

int top = -1; /* initialize stack */

33

trepointer stack [MAZ_STACK_SIZE];

for (; ;) {

for (; node ; node = node→leftChild)

push (node); / * add to stack * /

node = pop() ; / * delete from stack * /

if (! node) break; / * empty stack * /

printf (“ % d”, node →data);

node = node→right Child;

}

}

THREADED BINARY TREES:

The idea is to replace the null links by pointers, called threads, to other nodes in the

tree If the RCHILD(P) is normally equal to zero, we will replace it by a pointer to the node

which would be printed after P when traversing the tree in inorder. A null LCHILD link at

node P is replaced by a pointer to the node which immediately precedes node P in inorder.

The tree T has 9 nodes and 10 null links which have been replaced by threads. If we

traverse T in inorder the nodes will be visited in the order HDIBEAFCG.

For example node E has a predecessor thread which points to B and a successor thread which

points to A.

In the memory representation we must be able to distinguish between threads and

normal pointers. The is done by adding two extra one bit fields LBIT and RBIT.

LBIT(P) =1 if LCHILD (P) is a normal pointer

LBIT (P) = 0 if LCHID(P) is a thread

RBIT(P) = 1 if RCHILD(P) is a normal pointer

RBIT (P)= 0 if RCHILD (P) is a thread

Figure 5-1) : Threadec

34

procedure INSUC(X)

*find the inorder st

S← RCHIULD (X)

if RBIT(X) = I then

S← LCHILD(S) * uni

end]

return(S)

end INSUC

procedure TINORDER (T)

travers the threaded binary tree, T, in order

HEAD ← T

loop

if T = HEAD then return

print (DATA(T))

forever

end TINORDER

procedure INSERT_RIGHT (S,)

insert node T as the right child of S in a threaded binary tree

RCHILD (T) ← RCHILD(S) : RBIT(T) ← RBIT(S)

LCHILD (T) ← S: LBIT (T) ← 0 * LCHILD (T) is a thread*

RCHILD (S) ← T: RBIT (S) ← 1 * attach node T to S*

if RBIT(T) ← I [W INSUCT(T) * S had a right child *

LCHILD(W) ← T]

35

end INSERT_ RIGHT

1. Write out the inorder, preorder, postorder, and level-order treversals for the binary

trees of Figure 5.10.

2. Do Exercise 1for the binary tree of Figure 5.11.

3. Do Exercise 1for the binary tree of Figure 5.15.

BINARY SEARCH TREE ALGORITHM:

Definition:

A binary search tree T is a binary tree; either it is empty or each node in the tree

contains an identifier. All identifiers in the left subtree of T are less (Numerically or

Alphabetically) than the identifier in the rot node T. The left and Right subtree are also binary

search tree.

Function Binary search(keys, X Low, High Result) Given a vector keys (an input

parameter) whose elements are in ascending order, this procedure searches the vector for a

given element whose value is given by the input parameter X and returns in the position in

the vector to the calling program in the parameter result. Low & High are input parameter

36

defining the current search interval. Initially low denotes the first subscript of vector keys, so

that keys (Low) is the smallest value and High denotes the last subscript of the vector keys,

so that keys (High) is the largest value middle denotes the midpoint of the interval.

1. Is desired element absent If low High and keys (Low) f X then wirte (search is un

successful) Result ←0

Return

end if

2. Obtain position of midpoint of interval.

MIDDLE = (Low + High) div2

3. Compare

if keys (middle) = x

then write („search is successful)

result ← middle

else if keys (middle) < X

then call Bin – search recursive

else(Key, X, middle + 1 Low Result)

else (Key, X, middle – 1 High Result)

end if

end if

BINARY TREE SEARCH:

Function BTS (ROOT, item)

*given the input parameters root and item, as described previously, this function performs a

search operation on the tree structure. The node structure (NODE) contains a left pointer

(LPTR) an item description (INFO) and a right pointer (RPTR). The is initially invoked with

the head node of a tree and recursively searches the tree for a node whose info field matches

item*

Then return (Root) end if

37

node found

if item = INFO(ROOT)

if ITEM < INFOR (ROOT)

then return(root) * node not in tree *

else return * BTS (LPTR,(ROOT), ITEM))*

end if * search left sub tree*

end if

if search Right subtree

if ITEM > INFOT(ROOT)

then if RPTR (ROOT) – NULL

then return (ROOT)

else Return (BTS (RPTR, (ROOT), ITE)

end if

end if

FORESTS

A forests is a set of n ≥0 disjoint trees.

A Forest is obtained, when the root of a tree is removed

Transforming a Forest into a Binary Tree

To transform a forest into a single binary tree, we first obtain the binary tree

representation of each of the trees in the forest and then link these binary trees through the

right child field of the root nodes. Using this transformation, the forest or Figure 5.35

becomes the binary tree of Figure

Fig : A – three tree forest

38

Fig : B – Binary tree representation of forest of fig. A

Definition: If T1…, Tn is a forest of trees, then the binary tree corresponding to this forest,

denoted by B (T1,..,Tn),

1) Is empty if n= 0

2) Has root equal to root (T1); has left subtree equal to B(T11, T12,…,T1m), whereT11,…,

are the subtrees of root (T1); and has right subtree B (T2,…, Tn).

39

UNIT – IV

GRAPHS

The Graph Abstract Data Type

Introduction

Graphs have been used in a wide variety of applications. Some of these applications

are: analysis of electrical circuits, finding shortest routes, project planning, identification of

chemical compounds, statistical mechanics, genetics, cybernetics, linguistics, social sciences,

and so on. Indeed, it might well be said that of all mathematical structures, graphs are the

most widely used.

Definitions

A graph, G, consists of two sets, V and E. V is a finite, nonempty set of vertices. E is

a set of pairs of vertices; these pairs are called edges. V(G) and E(G) will represent the sets of

vertices and edges, respectively, of graph G. We will also write G = (V, E) to represent a

graph. In an undirected graph the pair of vertices representing any edge is unordered. Thus,

the pairs (u,v) and (v,u) represent the same edge. In a directed graph each edge is represented

by a directed pair <u, v>; u is the tail and v the head of the edge+. Therefore, <v,u> and <u,v>

represent two different edges. Figure 6.2 shows three graphs: G1, G2 and G3. The graphs G1

and G2 undirected. G3 is a directed graph.

G 1 G2 G3

The set representation of each of these graph is

3

1 2

3

0

1 2

3 4 5 6

0

1

2

40

V(G1) = {0,1,2,3}; E(g1) = {(0,1), (0,2), (0,3), (1,2), (1,3), (2,3)}

V(G2) = {0,1,2,3,4,5,6}; E(G2) = {(0,1), (0,2), (1,3), (1,4), (2,5), (2,6)}

V(G3) = {0,1,2}; E(G3) = {<0,1>, <1,0>, <1,2>}.

Notice that the edges of a directed graph are drawn with an arrow from the tail to the

head. The graph G2 is a tree; the graphs G1 and G3 are not.

Since we define the edges and vertices of a graph assets, we impose the following

restrictions on graphs:

1) A graph may not have an edge from a vertex, v, back to itself. That is, edges of the

form (v,v) and <v, v> are not legal. Such edges are known as self edges or self loops.

If we permit self edges, we obtain a data object referred to as a graph with self edges.

An example is shown in Figure 6.3(a).

(a) Graph with a self edge b) Multigraph

2) A graph may not have multiple occurrences of the same edge. If we remove this

restriction, we obtain a data object referred to as a multigraph (see Figure 6.3 (b)).

The number of district unordered pairs (u,v) with u v in a graph with n vertices is

n(n-1)/2. This is the maximum number of edges in any n-vertex, undirected graph. An n-

vertex, undirected graph with exactly n(n-1)/2 edges is said to be complete. The grapn G1 of

Figure 6.2(a) is the complete graph on four vertices, whereas G2 and G3 are not compete

graphs. In the case of a directed graph on n vertices, the maximum number of edges in n(n-1)

1
0

2

0

1 3

2

41

If (u,v) is an edge in E(g), then we shall say the vertices u and v are adjacent and that

the edge (u,v) is incident on vertices u and v. The vertices adjacent to vertex 1 in G2 are 3, 4

and 0. The edges incident on vertex 2 in G2 are (0,2), (2,5), and (2,6). If <u,v> is a directed

edge, then vertex u is adjacent to v, and v is adjacent from u. The edge <u,v> is incident to u

and v. In G3, the edges incident to vertex 1 are <0,1>, <1,0>, and <1, 2>.

A subgraph of G is a graph G such that V(G) ⊆ V(G) and E(G) ⊆ E(G). Figure 6.4

shows some of the subgraphs of G1 and G3.

(i) (ii) (iii) (iv)

(a) Some of the subgraphs of G1

(i) (ii) (iii) (iv)

(a) Some of the subgraphs of G1

0

1 2

0
1 2

3

1 2

3

0

1

1

0

1

0 0 0

2 2 2

42

A path from vertex u to vertex v in graph G is a sequence of vertices u, i1,i2, …., ik, v

such that (u,i1), (i1, i2), …., (I,, v) are edges in E(G). The length of a path is the number of

edges on it. A Simple path is a path in which all vertices except possibly the first and last are

district. A path such as (0,1) (1,3) (3,2) is also written as 0,1,3,2. Paths 0,1,3,2 and 0,1,3,1 of

G1 are both of length 3. The first is a simple path; the second is not. 0,1,2 is a simple directed

path in G3. 0,1,2,1 is not a path in G3, as the edge <2, 1> is not in E(G3).

A cycle is a simple path in which the first and last vertices are the same. 0,1,2,0 is a

cycle in G1. 0,1,0 is a cycle in G3. For the case of directed graphs we normally add the prefix

“directed” to the terms cycle and path.

In an undirected graph. G, two vertices u and v are said to be connected iff there is a

path from v to u). An undirected graph is said to be connected iff for every pair of district

vertices u an v in V(G) there is a path from u to v in G. Graphs G1 and G2 are connected,

whereas G4 of Figure 6.5 is not. A connected component (or simply a component), H of an

undirected graph is a maximal connected subgraph. By maximal, we mean that G contains no

other subgraph that is both connected and properly contains H. G4 has two components, H1

and H2 (see Figure 6.5)

G4

0

2 1

3

4

5 6

7

43

A tree is a connected a cyclie (ie. has no cycles) graph.

A directed graph G is said to be strongly connected iff for every pair of district

vertices u and v in V(G), there is a directed path from u to v and also from v to u. The

graph G3 is not strongly connected as there is no path from vertex 2 to 1. A strongly

connected component is a maximal subgraph that is strongly connected. G3 has two

strongly connected components (see Figure 6.6).

Figure : Strongly connected components of G3

The degree of a vertex is the number of edges incident to that vertex. The degree of

vertex 0 in G1 is 3. If G is a directed graph, we define the in-degree of a vertex v to be the

number of edges for which v is the head. The out-degree is defined to be the number of

edges for which v is the tail. Vertex 1 of G3 has in-degree 1, out-degree 2, and degree 3.

If d, is the degree of vertex I in a graph G with n vertices and e edges, then the number of

edges is

n1

e = (di) / 2
i0

We shall refer to a directed graph as a digraph.

ADT Graph is

Objects: a nonempty set of vertices and a set of undirected edges, where each edge is

a pair of vertices.

0

1

44

Functions:

for all graph ϵ Graph, v, v1, and v2 ϵ Vertices

Graph Create () ::= return an empty graph.

Graph Insert Vertex (graph, v) ::= return a graph with v inserted.

v has no incident edeges.

Graph Insert Edge (graph, v1, v2) ::= return a graph with a new edge

between V1 and V2

Graph Delete Vertex (graph, v) ::= return a graph in which v and all

edges incident to it are removed.

Graph Delete Edge (graph, v1, v2) ::= return a graph in which the edge

(v1, v2) is removed. Leave

the incident nodes in the graph.

Boolean Is Empty (graph) ::= if (graph== empty graph) return

TRUE else return FALSE.

List Adjacent (graph, v) ::= return a list of all vertices that

are adjacent to v.

ADT Abstract data type Graph

The operations in ADT. 6.1 are a basic set in that allow us to create any arbitrary

graph and do some elementary tests. In the later sections of this chapter we shall see

functions that traverse a graph (depth first or breadth first search) and that determine if a

graph has special properties (connected, biconnected, planar).

The three most commonly used: adjacency matrices, adjacency lists, and adjacency multilists.

45

Adjacency Matrix

Let G = (V, E) be a graph with n vertices, n> 1. The adjacency matrix of G is a two.

dimensional n x n array, say a, with the property that a [i] [j] = 1 iff the edge (i, j) (<I, j> for a

directed graph) is in E(G). a[i] [j] = 0 if there is no such edge in G. The adjacency matrices

for the graphs G1, G3 and G4 are shown in Figure 6.7 The adjacency matrix for an

undirected graph is symmetric, as the edge (i, j) is in E(G) iff the edge (j,i) is also in E(G).

The adjacency matrix for a directed graph may not be symmetric (as in the case for G3). The

space needed to represent a graph using its adjacency matrix is n2 bits. About half this space

can be saved in the case of undirected graphs by storing only the upper or lower triangle of

the matrix.

0 1 2 3

0 1 1 1 1

1 1 0 1 1

2 1 1 0 1

3 1 1 1 0

0 1 2

0 0 1 0

1 1 0 1

2 0 0 0

0 1 2 3 4 5 6 7

0 0 1 1 0 0 0 0 0

1 1 0 0 1 0 0 0 0

2 1 0 0 1 0 0 0 0

3 0 1 1 0 0 0 0 0

4 0 0 0 0 0 1 0 0

5 0 0 0 0 1 0 1 0

6 0 0 0 0 0 1 0 1

7 0 0 0 0 0 0 1 0

From the adjacency matrix, one may readily determine if there is an edge connecting any two

vertices i and j. For an undirected graph the degree of nay vertex i is its row sum:

n1

j 0

a[i][j]

For a directed graph the row sum is the out-degree, and the column sum is the in-

degree.

46

Adjacency Lists

In this representation of graphs, the n rows of the adjacency matrix are represented as

n chains (though sequential lists could be used just as well). There is on chain for each vertex

in G. The nodes in chain I represent the vertices that are adjacent from vertex i. The data field

of a chain node stores the index of an adjacent vertex. The adjacency lists for G1, G3 and G4

are shown in Figure 6.8. Notice that the vertices in each chain are not required to be ordered.

An array adjlists is used so that we can access the adjacency list for any vertex in O(1) time.

adjLists [i] is a pointer to the first node in the adjacency list for vertex i.

For an undirected graph with n vertices and e edges, the linked adjacency lists

representation requires an array of size n and 2e chain nodes. Each chain node has two fields.

In terms of the number of bits of storage needed, the node count should be multiplied by logn

n for the array positions and log n + log e for the chain nodes, as it takes O(logm) bits to

represent a number of value m. If instead of chains, we use sequential lists, the adjacency lists

may be packed into an integer array node [n+2e +1]. In one possible sequential mapping,

node [i] gives the starting point of the list for vertex I, 0 < < n, and node [n] is set to n + 2e +

1. The vertices adjacent from vertex I are stored in node [i], …, node [i+1] -1, 0 < I < n.

Figure 6.9 shows the representation for the graph G4 of Figure 6.5

The degree of any vertex in an undirected graph may be determined by just counting

the number of nodes in its adjacency list.

For a digraph, the number of list nodes is only e. The out-degree of any vertex may be

determined by counting the number of nodes on its adjacency list. Determining the in-degree

of a vertex is a little more complex. If there is a need to access repeatedly all vertices adjacent

to another vertex, then it may be worth the effort to keep another set

47

adjLists data link

[0]

[1]

[2]

[3]

(a) G1

adjLists data link

[0]

[1]

[2]

(b) G3

2 1 0

0 0 3 1

0 0 3 2

0 2 1 3

1

0

2 0 0

0

0

48

adjLists

49

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

G 4

0 6

7 5

0 4 6

0 5

0 2 1

0 3 0

0 0 3

0 1 2

0

50

int nodes [n+2*e+1];

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

9 11 13 15 17 18 20 22 23 2 1 3 0 0 3 1 2 5 6 4 5 7 6

Figure : Sequential representation of graph G4

of lists in addition to the adjacency lists. This set of list, called inverse adjacency lists, will

contain one list for each vertex. Each list will contain a node for each vertex adjacent to the

vertex it represents (see Figure 6.10)

[0]

[1]

[2]

Figure : Inverse adjacency lists for G3 (Figure (c)

Figure 6.11 shows the resulting structure for the graph G3 of Figure 6.2©. The header

nodes are stored sequentially. The first two fields in each node give the head and tail of the

edge represented by the node, the remaining two fields are links for row and column chains.

Adjacency Multilists

In the adjacency-list representation of an undirected graph, each edge (u,v) is

represented by two entries, one on the list for u and the other on the list for v. As we shall see,

in some situations it is necessary to be able to determine the second entry for a particular

1

0 0

0 1

0

51

edge and mark that edge as having been examined. This can be accomplished easily if the

adjacency lists are actually maintained as multilists (i.e. lists in which nodes

header nodes

(shown twice)

2 0

Figure: Orthogonal list representation for G3 of Figure 6.2(c)

may be shared among several lists). For each edge there will be exactly one node, but this

node will be in two lists (i.e. the adjacency lists for each of the two nodes to which it is

incident). The new node structure is.

m vertex1 vertex2 link1 link2

where m is a Boolean mark field that may be used to indicate whether or not the edge has

been examined. The storage requirements are the same as for normal adjacency lists, except

for the addition of the mark bit m. Figure 6.12 shows the adjacency multilists for G1 of Figure

6.2(a).

Weighted Edges

In many applications, the edges of a graph have weights assigned to them. These

weights may represent the distance from one vertex to another or the cost of going from one

vertex to an adjacent vertex.

Figure: A diagraph

1 1

 0

 1

 2

0

0 1 0 0

1 2 0 0

0 0

52

3. Draw the complete undirected graphs on one, two, three, four, and five vertices. Prove

that the number of edges in an n-vertex complete graph is n(n-1)/2.

4. Is the directed graph of Figure 6.15 strongly connected? List all the simple paths.

6. Show that the sum of the degrees of the vertices of an undirected graph is twice the

number of edges.

7. a) Let G be a connected, undirected graph on n vertices. Show that G

must have at least n-1 edges and that all connected, undirected graphs with n-1 edges

are trees.

b) What is the minimum number of edges in a strongly connected digraph on n vertices?

What form do such digraphs have?

ELEMENTRY GRAPH OPERATIONS

Given the root node of a binary tree, one of the most common things one wishes to do

is to traverse the tree and visit the nodes, in some order. Given an undirected graph G+ (V,E)

and a vertex v in V (G) we are two way Depth First Search and Breadth First Search.

Depth First Search:

Depth First Search of an undirected graph proceeds as follows. The start vertex v is

visited. Next an unvisited vertex w adjacent to v is selected and a depth first search from w

initiated. When a vertex u is reached such that all its adjacent vertices have been visited, we

back up to the last vertex visited which has an unvisited vertex w adjacent to it and initiate a

depth first search from w. The search terminates when no unvisited vertex can be reached

from any of the visited ones. This procedure is best described recursively as in

Procedure DFS(v)

*Given an undirected graph G=(V,E) with n vertices and an arrayVISITED (n) initially set to

zero, this algorithm visits all vertices reachable from v, G and VISITED are global. *

VISITED(V) ← 1

for each vertex w adjacent to v do

if VISITED (w) = 0 then call DFS(w)

53

end

end DFS

Breath First Search:

Starting at vertex v and marking it as visited, breadth first search differs from depth

first search in that all unvisited vertices adjacent to v are visited next. Then unvisited vertices

adjacent to these vertices are visited and so on. A breadth first search beginning at vertex v1.

Next vertices v4, v5,v6, and v7 will be visited and finally v8. Algorithm BFS given the

details.

Procedure BFS(v)

*A breadth first search of G is carried out beginning at vertex y. All vertices visited are

marked as VISITED (i) = 1. The graph G and array VISITED are global and VISITED is

initialize Q to be empty *Q is a queue*

loop

end

for all vertices w adjacent to v do

then [call ADD1(w,Q); VISITED (w) ← 1] *mark w as VISITED*\

if Q is empty then return

call DELETEQ(v,Q)

forever

end BFS

Example: DFS: v1,v2, v4,v8,v5,v6, v3, v7

BFS: v1,v2,v3,v4,v5,v6,v7,v8

MINIMUM COST SPANNING TREES

The cost of a spanning tree of a weighted undirected graph is the sum of the costs

(weights) of the edges in the spanning tree. A minimum cost spanning tree is a spanning tree

of least cost. Three different algorithms can be used to obtain a minimum cost spanning tree

of a connected undirected graph. All three use an algorithm design strategy called the greedy

54

method. We shall refer to the three algorithms as Kruskal‟s, Prim‟s, and Sollin‟s algorithms,

respectively.

For spanning trees, we use a least cost criterion. Our solution must satisfy the

following constraints :

1) we must use only edges within the graph

2) we must use exactly n-1 edges

3) we may not use edges that would produce a cycle.

Shortest – Path Algorithm:

Let G be a directed graph with m nodes v1, v2 … vm suppose G is weighted v,

suppose each edge e in G is assigned a non negative number W(e) called weight or length of

the edge. e Then G may be maintained in memory by it weight matrix W = W ij defined as

follows

W ij = W(e) if there is an edge e from vi, to vj

O if there is no edge from vi vj.

The path matrix P tells us whether or not there are path bit the nodes. Now we want to

find a matrix Q which will tell us the length of the shortest path bit the nodes or more exactly

, a matrix Q = Wij where Wij = length of a shortest path from vi to vj.

Here we define a sequence of matrices Qo Qi… Qm (analog to the above matrix P1,

P2, .. Pm) whose entries are defined as follow.

Qk(I,j) = MIN (Qk-1(i,j),Qk-1(k,j)

The initial matrix Q 0 is the same as the weight matrix w except that 0 win W is

replace by D. The final matrix Qm will be desired matrix Q.

Consider the weighted graph G in Figure. Then the weight W of G is as follows we

obtain the following matrics Q0, Q2 Q3 and Q 4 = Q

We indicate how the circled entries and obtained.

Q1(4,2) = MIN (Q0(4,2), + q0 (1,2))

Q2(1,3) = a

55

Q3 (4,2) =4

Q4(3,1) =9

Algorithm:

A weighted graph „G‟ with M node is are maintenance in memory by its weight

matrix A. This algorithm finds a matrix Q such that q (I,j) is the length of a shortest path

from node vi to node vj. INFINITY is a very large number and MIN is the minimum value

function.

1. Repeat for I,J = 1,2 …m * initialize Q*

W (I,I) = o then set

Q(I,J) = INFINITY

else set Q (I,J) = W(I,J) = w(I,J)

end of loop

2. Repeat steps 3 and 4 for K = 1,2….m *updates Q*

3. Repeat step 4 for

I = 1,2 …. m;

1. Repeat for j= 1,2…. m

set Q (i,j) = MIN (Q(i, j), Q(i,k)+ Q(k,j)]

end

end of step 3

end of step 2

exit.

Kruskal’s Algorithm

Kruskal‟s algorithm builds a minimum cost spanning tree T by adding edges to T one

at a time. The algorithm selects the edges for inclusion in T in nondecreasing order of their

56

cost. An edge is added to T if it does not from a cycle with the edges that are already in T.

Since G is connected and has n>0 vertices, exactly n-1 edges will be selected for inclusion in

T.

We assume that initially E is the set of all edges in G. To implement Kruskal‟s

algorithm, we must be able to determine an edge with minimum cost and delete that edge. We

can handle both of these operations efficiently if we maintain the edges in E as a sorted

sequential list.

We can sort the edges in E in O(e log e) time. Actually, it is not necessary to sort the

edges in E as long as we are able to find the next least cost edge quickly. Obviously a min

heap is ideally suited for this task since we can determine and delete the next least cost edge

in O(log e) time. Construction of the heap itself requires O(e) time.

To check that the new edge, (v, w), does not form a cycle in T and to add such an

edge to T. we may use the union-find operations discussed in Section 5.9. This means that we

view each connected component in T as a set containing the vertices in that component.

Initially, T is empty and each vertex of G is in a different set (see Figure 6.22(b)). Before we

add an edge, (v,w) we use the find operation to determine if v and w are in the same set. If

they are, the two vertices are already connected and adding the edge (v,w) would cause a

cycle. For example, when we consider the edge (3,2) the sets would be {0}, {1, 2, 3}, {5},

{6}. Since vertices 3 and 2 are already in the same set, the edge (3,2) is rejected. The next

edge examined is (1,5) Since vertices 1 and 5 are in different sets, the edge is accepted. This

edge connects the two components {1,2,3} and {5}. Therefore, we perform a union on these

sets to obtain the set {1, 2, 3, 5}.

Since the union-find operations require less time than choosing and deleting an edge

(lines 3 and 4), the latter operations determine the total computing time of Kruskal‟s

algorithm. Thus, the total computing time is O(e log e).

57

Edge Weight Result Figure

-- -- initial Figure 6.22 (b)

(0,5) 10 added to tree Figure 6.22 (c)

(2,3) 12 added Figure 6.22 (d)

(1,6) 14 added Figure 6.22 (e)

(1,2) 16 added Figure 6.22 (f)

(3,6) 18 discarded

(3,4) 22 added Figure 6.22 (g)

(4,6) 24 discarded

58

(4,5) 25 added Figure 6.22 (h)

(0,1) 28 not considered

Figure : summary of Kruskal‟s algorithm applied to Figure (a)

T = { } ;

while (T contains less than n-1 edges & & E is not empty) {

choose a least cost edge (v,w) from E;

delete (v,w) from E;

if ((v,w) does not create a cycle in T)

add (v,w) to T;

else

discard (v,w) ;

}

if (T contains fewer than n-1 edges)

print f(“No spanning tree/n”) ;

Prim‟s Algorithm

Prim‟s algorithm, like Kruskl‟s, constructs the minimum cost spanning tree one edge at a

time. However, at each stage of the algorithm, the set of selected edges forms a tree. By

contrast, the set of selected edges in Kruskal‟s algorithm forms a forest at each stage. Prim‟s

algorithm begins with a tree, T, that contains a single vertex. This may be any of the vertices

in the original graph. Next, we add a least cost edge (u,v) to T such that T { (u, v)} is also

a tree. We repeat this edge addition step until T contain n-1 edges. To make sure that the

added edge does not form a cycle, at each step we choose the edge (u,v) such that exactly one

of u or v is in T. Program 6.8 contains a formal description of Prim‟s algorithm. T is the set

of tree edges, and TV is the set of tree vertices, that is, vertices that are currently in the tree.

Figure 6.24 shows the progress of Prim‟s algorithm on the graph of Figure 6.22(a).

59

T = { } ;

TV = { 0 } ; / * start with vertex 0 and no edges * /

while (T contains fewer than n-1 edges) {

let (u, v) be a least cost edge such that u ∈ TV and cost (near(v), v) is minimum over all

such choices for near(v). (We assume that cost (v, w) = if (v, w) ∉ E). At each stage we

select v so that cost (near (v), v) is minimum and v∉ TV. Using this strategy we can

implement Prim‟s algorithm in O(n2), where n is the number of vertices in G. Asymptotically

faster implementations are also possible.

We not consider the general case when some or all of the edges of the directed graph G

may have negative length. To see that function shortespath (Program 6.9) does not

necessarily give the correct results on such graphs, consider the graph of Figure 6.29. Let V =

0 be the source vertex. Since n=3, the loop of lines 7 to 14 is iterated just once; u=2 in line 8,

and no changes are made to dist. The function terminates with dist [1] = 7 and dist [2] = 5.

The shortest path from 0 to 2 is 0, 1, 2. This path has length 2, which is less than the

computed value of dist [2].

60

When negative edge lengths are permitted, we require that the graph have no cycles of

negative length. This is necessary so as to ensure that shortest paths consist of a finite number

of edges. For example, consider the graph of Figure 6.30. The length of the shortest path from

vertex 0 to vertex 2 is - as the length of the path.

0, 1, 0, 1, 0, 1, . . ., 0, 1, 2

can be made arbitrarily small. This is so because of the presence of the cycle 0, 1, 0 which

has a length of -1.

(a) Digraph

 0 1 2 3 4 5 6 7

0 0

1 300 0

2 1000 800 0

3

1200 0

4

1500 0 250

5

1000

0 900 1400

6

0 1000

7 1700

0

(b) Length – adjacency matrix

61

Figure : Digraph for Example

When there are no cycles of negative length, there is a shortest path between any two

vertices of an n-vertex graph that has at most n-1 edges on it. To see this, observe that a path

that has more than n-1 edges must repeat at least one vertex and hence must contain a cycle.

Elimination of the cycles from the path results in another path with the same source and

destination. This path is cycle-free and has a length that is no more than that of the original

path, as the length of the eliminated cycles was at least zero. We can use this observation on

the maximum number of edges on a cycle-free shortest path to obtain an algorithm to

determine a shortest path from a source vertex to all remaining vertices in the graph.

As in the case of function shortest Path (Program 6.9) We shall compute only the length,

dist [u], of the shortest path from the source vertex v to u. An exercise examines the

extension needed to construct the shortest paths.

5

Figure : Directed graph with a negative – length edge.

-2

Figure: Directed graph with a cycle of negative length

Let dist1 [u] be the length of a shortest path from the source vertex v to vertex u under the

constraint that the shortest path contains at most l edges. Then, dist1 [u] = length [v] [u], 0 < u

< n. As noted earlier, when there are no cycles of negative length, we can limit our search for

shortest paths to paths with at most n-1 edges. Hence, distn-1 [u] is the length of an

unrestricted shortest path from v to u.

0
7 1 -5

2

0 1 1 1
2

62

Our goal then is to compute distn-1 [u] for all u. This can be done using the dynamic

programming methodology. First, we make the following observations:

1) If the shortest path from v to u with at most k, k > 1, edges has no more than k-1 edges,

then distk[u] = distk-1[u].

2) If the shortest path from v to u with at most k, k>1, edges has exactly k edges, then it

is comprised of a shortest path from v to some vertex j followed by the edge <j, u>.

The path from v to j has k-1 edges, and its length is distk-1 [j]. All vertices I such that

the edge <I, u> is in the graph are candidates for j. Since we are interested in a

shortest path, the i that minimizes dist k-1 [i] + length [i] [u] is the correct value for j.

These observations result in the following recurrence for dist:

distk[u] = min {distk-1[u], min {distk-1[i] + length [i] [u]}}

This recurrence may be used to compute distk from distk-1 for k=2,3, …..n-1.

All Pairs shortest Paths

In the all-pairs-shortest-path problem we must find the shortest paths between all pairs of

vertices, v1, vj, i j. We could solve this problem using shortestpath with each of the vertices

in V(G) as the source. Since G has n vertices and shortestpath has a time complexity of O(n2),

the total time required would be O(n3). However, we can obtain a conceptually simpler

algorithm that works correctly even if some edges in G have negative weights. (We do

require that G has no cycles with a negative length). Although this algorithm still has a

computing time of O(n3), it has a smaller constant factor. This new algorithm used the

dynamic programming method.

63

We represent the graph G by its cost adjacency matrix with cost [i] [j] = 0, i =j. If the

edge <I, j>, i j is not in G, we set cost [i] [j] to some sufficiently large number using the

same restrictions discussed in the single source problem. Let Ak [i] [j] be the cost of the

shortest path form i to j, using only those intermediate vertices with an index < k. The cost of

the shortest path from i to j is An-1 [i] [j] as no vertex in G has an index greater than n-1.

Further A-1 [i] [j] = cost [i] [j] since the only i to j paths allowed have no intermediate vertices

on them.

The basic idea in the all pairs algorithm is to begin with the matrix A-1 and successively

generate the matrices A0, A1, A2, …., An-1. If we have already generated Ak-1, then we may

generate Ak by realizing that for any pair of vertices i, j one of the two rules below applies.

1) The shortest path from i to j going through no vertex with index greater than k does

not go through the vertex with index k and so its cost is Ak-1 [i] [j]

2) The shortest such path does go through vertex k. Such a path consists of a path from i

to k followed by one from k to j. Neither of these goes through a vertex with index greate

than k-1. Hence, their costs are Ak-1 [i] [j] and Ak-1 [k] [j].

These rules yield the following formulas for Ak [i] [j]:

Ak [i] [j] = min {Ak-1[i] [j], Ak-1 [i] [k] + Ak-1 [k] [j]}, k>0

and

 [i] [j] = cost [i] [j]

-2

 0

(a) Directed graph (b) A-1

5 5 5
1 1

0 1

-2 0 1

64

void allcosts (int cost [] [MAX – VERTICES],

int distance [] [MAX-VERTICES], int n)

{ / * compute the shortest distance from each vertex

to every other, cost is the adjacency matrix,

distance is the matrix of computed distances */

int I, j, k;

for (I = 0 ; i < n ; I + +)

for (j = 0; j < n; j + +)

distance [i] [j] = cost [i] [j] ;

for (k = 0; k < n; k ++)

for (i = o; j < n ; i ++)

for (j = 0 ; j < n ; j + +)

if (distance [i] [k] + distance [k] [j] <

distance [i] [j])

distance [i] [j] =

distance [i] [k] + distance [k] [j] ;

Program 6.12 : All pairs, shortest paths function

Analysis of all costs: This algorithm is especially easy to analyze because the looping is

independent of the data in the distance matrix. The total time for all costs is O(n3)

65

UNIT – V

Chapter 7

Sorting

Motivation

We use the term list to man a collection of records, each record having one or more fields.

The fields used to distinguish among the records are known as keys.

One way to search for a record with the specified key is to examine the lit of records in

left-to-right or right-to-left order. Such a search is known as a sequential search.

The data type of each record is element and each record is assumed to have an integer

field key. Program 7.1 gives a sequential search function that examines the records in the list

a [l :n] in left-to-right order.

int seqsearch element a [], int k, int n)

{ / * search all : n]; return the least i such that

a [i]. key = k ; return 0, if k is not in the array * /

int i ;

for (I = 1 ; i < = n & & a [i], key ! = k ; i + +)

;

if (i > n) return 0 ;

return i ;

}

If a [l : n] does not contain a record with key k, the search is unsuccessful.

When all keys are district and a [i] is being searched for, i key comparisons are made. So,

the average number of comparisons for a successful search is

(i) /n=(n+1)/2.

1in

66

It is possible to do much better than this when looking up phone numbers. The fact that

the entries in the list (i.e., the telephone directory) are in lexicographic order (on the name

key) enables one to look up a number while examining only a very few entries in the list.

Binary search (see Chapter 1) is one of the better-known methods for searching an ordered,

sequential list. A binary search takes only O(logn) time to search a list with n records. This is

considerably better than the O(n) time required by a sequential search.

Two important uses of sorting: (1) as an aid in searching and (2) as a means for matching

entries in lists. Sorting also finds application in the solution of many other more complex

problems from areas such as optimization, graph theory and job scheduling. Consequently,

the problem of sorting has great relevance in the study of computing. Unfortunately, no one

sorting method is the best for all applications. We shall therefore study several methods,

indicating when one is superior to the others.

We characterize sorting methods into two broad categories: (1) internal methods (i.e.,

methods to be used when the list to be sorted is small enough so that the entire sort can be

carried out in main memory) and (2) external methods (i.e. methods to be used on larger

lists). The following internal sorting methods will be developed: insertion sort, quick sort,

merge sort, heap sort, and radix sort.

In the recursive formation we divide the list to be sorted into two roughly equal parts

called the left and the right sublists. These sublists are sorted recursively, and the sorted

sublists are merged.

INSERTION (A,N)

(This algorithm sorts the array A with N Elements)

set A (0)= - D (Initialize sentient element)

Repeat steps 3 to 5 for K = 2,3,… N

Set TEMP = A(k) and

PTR = K -1

Repeat while TEMP < A (PTR)

Set A(PTR + 1) = A(PTR)

Moves element forward

Set PTR = PTR – 1

end of loop)

Set A (PTR+1) = TEMP

67

Insert the elements in proper place

End of step 2 loop

Return

Quick sort:

Let A be list of n data items. Sorting A refers to the operation of rearranging the elements of

A so that they are in some logical order. This is an algorithm of the divide and conquer types.

44, 33, 11, 55, 77, 90, 4o, 60, 99, 22, 88, 66

22, 33, 11, 55, 77, 90, 40, 60, 99, 44, 88, 66

22, 33, 11, 44, 77, 90, 40, 60, 99, 55, 88, 66

22, 33, 11,40, 77, 90, 44, 60, 99, 55, 88, 60

22, 33, 11, 40, 44, 90,77, 60, 99,55,88,66

Etc., In Q.S. the division in to two sub tiles is made such that the sorted sub files do not need

to be later merged.

Procedure QSORT

\// sort record Rm,…. Rn into no decreasing order on key k, key Km is arbitrarily chose as the

control key pointers I & j are used to partition the sub tile so that any time k, # K, & c1 and k

1 ≥ K,P < J and Ki ≥ K, P > j it is assured that

K m# Ln+1

If M< n n

Then [I ← j : m← n+1 : K ← Km

Loop

Repeat j ← i+ 1 until Kj ≥ K

Repeat j← I -1 until Kj # K

If I < j

Then call INTERCHANGE (R(j), (R(j))

Else exit

For ever

CALL INTERCHANGE (R(m), R(j))

CALL Q SORT (M, j-q)

68

CALL Q SORT(J+1, n)

End QSORT

TWO MERGE SORT:

Before looking at the merge sort algorithm to sorts records let us see how one may

merge two fiels (X1,…. Xm) and (Xm+1 …. Xn) that are already sorted to get a third file (

Zi,…., Zn) that is also sorted. Since this merging scheme is very simple, we directly present

the algorithm.

Procedure MERGE(X,1,m,n,Z)

// (X1,….. Xm) and (Xm+1…...............n) are two sorted files with keys X1 # … # Xm +1

#.......# Xn. They are merged to obtain the sorted file (Zi……….Zn) such such that

Z1#. # Zn//

i← K← 1; j←m+1 // j,j, and k are position in the thee files//

while I # m and j# n do

if Xi # Xj then [Zk← Xi;i← i + 1]

else [Zk ←Xj ; j← j+1]

k←k+1

end

if i> m then (Zk,…. Zn) ← (X i… , Xn)

else (Zk,…..Zn) ← (Xi, Xm)

Example -1

Set -1:

6,8,10

Set -2:

3,7, 20

Merge Sort:

3, 6,7,8,10,20

Example – 2

26,5, 77, 1

5,26,1,77

69

1,5,26,77

Example : The input list (26, 5, 77, 1, 61, 11, 59, 15, 49, 19) is to be sorted using the

recursive formulation of merge sort. If the sublist from left ot right is currently to be sorted,

then ists two sblists are indexed form left to [(left + right)/2] and from [(left + right)/2] + 1 to

rights. The sublist partitioning that takes place is described by the binary tree of Figure 7.5.

Note that the sublists begin merged are different from those being merged in mergeSort.

 26 5 77 1 61 11 59 15 48 19

5 26 11 59

5 26 77 1 61 11 15 59 19 48

1 5 26 61 77 11 15 19 48 59

 1 5 11 15 19 26 48 59 61 77

Figure : Sublist partitioning for recursive merge sort

To eliminate the record copying that takes place when merge (Program 7.7) is used to

merge sorted sublists we associate an integer pointer with each record. For this purpose, we

employ an integer array link [l:n] such that link [i] gives the record that follows record i in the

sorted sublist. In cast link [i] = 0, there is no next record. With the addition of this array of

links, record copying is replaced by link changes and the runtime of our sort function

becomes independent of the size s of a record. Also the additional space required is O(n). By

comparison, the iterative merge sort described earlier takes O(snlogn) time and O(sn)

additional space. On the down side, the use of an array of links yields a sorted chain of

70

records and we must have a follow up process to physically rearrange the records into the

sorted order dictated by the final chain. We describe the algorithm for this physical

rearrangement in section.

We assume that initially link [i] = 0, 1 < i < n. Thus, each record is initially in a chain

containing only itself. Let start 1 and start 2 be pointers to two chains of records. The records

on each chain are in nondecreasing order. Let list Merge (a, link, start1, start2) be a function

that merges two chain that is linked in nondecreasing order of key values. The recursive

version of merge sort is given by function rmerrmerge sort (Program 7.10) (a, link, 1, n). The

start of the chain ordered as described earlier is returned. Function list merge is given in

Program.

int rmergesort (element a [], in link [], int left, in rights)

{/* a [left : right] is to be sorted, link [i] is initially 0

for all I, returns the index of the first element in the

sorted chain */

if (left > = right) return left;

int mid = (left + right) / 2;

return listMerge (a, link,

rmegeSort (a, link, left, mid),

/* sort left half */

rmergeSort (a, link, mid + 1, right)) ;

/* sort right half */

Analysis of rmergeSort : It is easy to se that recursive merge sort is stable, and its computing

time is O(n log n).

int listMerge (element a [], int link [], int start1, int start2)

(/* sorted chains beginning at start1 and start2,

71

respectively, are merged; link [0] is used as a

temporary header; returns start of merged chain */

int last1, last2, lastResult = 0;

for (last1 = start1, last2 = start2; last1 & & last1;)

if (a [last1] < = a [last2)] {

link [lastResult] = last1 ;

lastResult = least1; last1 = link [last1];

}

else {

link [lastResult] = last2;

lastResult = last2; last2 = link [last2];

}

/* attach remaining records to result chain */

if (last1 = = 0) link [lastResult] = last2;

else link [lastResult] = lst1;

return link [0] ;

}

72

7.6 HEAPSORT

Merge sort has a computing time of O(n log n), both in the worst case and as average

behavior, it requires additional storage proportional to the number of records to be sorted.

heap sort, requires only a fixed amount of additional storage and at the same time has as its

worst-case and average computing time O(n log n). However, heap sort is slightly slower

than merge sort.

The deletion and insertion functions associated with max heaps directly yield an O(n log

n) sorting method. The n records are first inserted into an initially empty max heap. Next, the

records are extracted from the max heap one at a time. It is possible to create the max heap of

n records faster than by inserting the records one by one into an initially empty heap. Fro this,

we use the function adjust (Program 7.12) which starts with a binary tree whose left and right

subtrees are max heaps and rearranges records so that the entire birnary tree is a max heap.

The binary tree is embedded within an array using the standard mapping. If the depth of the

tree is d, then the for loop is executed at most d times. Hence the computing time of adjust is

O(d).

To sort the lsit, first we create a max heap by using adjust repeatedly, as in the first for

loop of function heapsort (Program 7.13) Next, we swap the first and last records in the heap.

Since the first record has the maximum key, the swap moves the record with maximum key

into its correct position in the sorted array. We then decrement the heap size and readjust the

heap. This swap, decrement heap size, readjust heap process is called a pass. For example, on

the first pass, we place the record with the highest key in the nth position; on the second pass,

we place the record with the second highest key in position n-1; and on the ith pass, we

palace the record with the second highest key in position n-1; and on the ith pass, we place

the record with the ith highest key in position n-i+1.

Example 7.7 : The input list is (26, 5, 77, 1, 61, 11, 59, 15, 48, 19) If we interpret this list as a

binary tree, we get the tree of Figure 7.7(a) Figure 7.7(b) depicts the max heap

void adjust (element a [], int root, int n)

{/* adjust the binary tree to establish the heap */

int child, rootkey;

73

element temp;

temp = a [root]. key;

child = 2 * root ; /*left child */

while (child < = n) {

if ((child < n) & &

(a [child]. key < a [child] . key) /* compare root and

max. child */

break;

else {

a [child /2] = a [child] ; /* move to parent */

child * =2;

}

}

a [child/2] = temp;

}

program 7.12 : Adjusting a max heap

after the first for loop of heapsort. Figure 7.8 shows the array of records following each of the

first seven iterations of the second for loop. The portion of the array that still represents a

max heap is shown as a binary treet; the sorted part of the array is shown as an array.

Analysis of heapSort : Suppose 2k-1 < n < 2k, so the tree has k levels and the number of

nodes on level I is < 2i-1. In the first for loop, adjust (Program 7.12) is called once for each

node that has a child. Hence, the time required for this loop is the sum, over each level, of the

number of nodes on a level multiplied by the maximum distance the node can move. This is

no more than

74

2i1(k i) 2k i1in i / 2i 2n O(n)

1in 1ik 1 1ik 1

In the next for loop, n-1 applications of adjust are made with maximum tree-depth k =

[log2 (n+1)] and SWAP is invoked n-1 times. Hence, the computing time for this loop is O(n

logn). Consequently, the total computing time is O(n logn).

void heapsort (element a [], int n)

{/* perform a heap sort on a [1 : n] * /

int I, j ;

element temp ;

for (i = n/2; i > 0 ; i - -)

adjust (a, i, n) ;

for (i = n-1 ; i > 0 ; i - -) {

SWAP (a [1], a [i +1], temp) ;

adjust (a, 1, i) ;

}

}

Program: Heap sort

75

Figure: Array interpreted as a binary tree

76

Figure : Heap sort example

77

HASHING

HASH TABLES:

In the tables, the search for an identifier key is carried out via a sequence of

comparisons. Hashing differ from this in that the address or location of an identifier, X, is

obtained by computing some arithmetic function f, of X. f(X) gives the address of X in the

table. This address will be referred to as the hash or home address of X. The memory

available to maintain the symbol table is assumed to be sequential. This memory is referred to

as the hash table, HT. The hash table is partitioned into b buckets, HT(0),…, Ht (b-1). Each

bucket is capable of holding s records. Thus, a bucket is said to consist of s slots each slot

being large enough to hold 1 record. Usually s = 1 and each bucket can hold exactly 1 record.

A hashing function, f(X), is used to perform an identifier transformation on X. f(X) maps the

set of possible identifiers onto the integers 0 through b -1. If the identifiers were drawn from

the set of all legal Fortran variable names them there would be T = ∑ 0# i #5 26 x 36i >1.6 x

109 distinct possible values for X. any reasonable program, however, would use far less than

all of these identifiers. The ration / T is the identifier density, while α –n /(sb) is the loading

density or loading factor. Since the number of identifiers, n, in use is usually identifiers, T,

the number of buckets b, in the hash table is also much less then T. Therefore, the has the has

function f must map several different identifiers into the same bucket. Two identifiers I1 I 2

are said to be synonyms with respect to f if f(I1) – f(I2). Distinct synonyms are entered into

the same buckets b, in the hash table is also much less then T. Therefore, the has the has

function f must map several different identifiers into the same bucket. Two identifiers I 1, I 2

are said to be synonyms with respect to f if f(I1) – f(I2). Distinct synonyms are entered into

the same bucket so long as all the s slots in that bucket has not been used. An overflow is said

to occur when a new identifier I is mapped or hashed by f into a full bucket. A collision

occurs when two non identical identifiers are hashed into the same bucket. When the bucket

size s is 1, collisions and overflows occur simultaneously.

As an example, let us consider the hash table HT with b= 26 buckets, each bucket

having exactly two slots, i.e., s=2. Assume that there are n= 10 distinct identifiers in the

program and that each identifier begins with a letter. The loading factor, α, for this table is 10

/52 – 0.19. The hash function f must map each of the possible identifiers into one of the

numbers 1-26.If the internal binary representation for the letters A- Z corresponds to the

numbers 1-26 respectively, then the function f defined by : f(X) – the first character of X;

78

will has all identifiers x into the hash table. The identifiers GA,D,A,G,L,A2,A1,A4,A4 and E

will be hashed into buckets 7,4,1,7,12,12,1,1,1,1 and 5 respectively by this function. The

identifiers A,A1,A2,A3 and A4 are synonyms.

 SLOT 1 SLOT 2

1 A A2

2 0 0

3 0 0

4 D 0

5 0 0

6 0 0

7 GA G

: : :

26 0 0

Zeros indicate empty slots So also are G and G a. Figure shows the identifiers GA,D,A,G and

A2 entered into the hash table. Note the GA and G are in the same bucket and each bucket

has two slots. Similarly, the synonyms A and A2 are in the same bucket. The next identifier,

a1, hashes into the bucket HT (1). This bucket is full and a search of the bucket indicates that

A1 is not in the bucket. And overflow has now occurred.

Has function is obtained by using the models operator

Fd(x)= x mod M

	UNIT - I CHAPTER - 1 BASIC CONCEPTS
	Definition:
	PERFORMANCE ANALYSIS
	Space Complexity
	Time Complexity
	CHAPTER 2 ARRAYS AND STRUCTURES
	ADT Array is
	Functions:
	ADT: Abstract Data Type Array
	POLYNOMIALS
	Polynominal Representation
	Functions: (1)
	Analysis of Padd:
	SPARSE MATRICES:
	REFRESENTATION OF ARRAYS:
	STACKS AND QUEUS FUNDAMENTALS:
	EVALUATION OF EXPRESSIONS:
	CHAPTER - 4
	LINKED STACK AND QUEUES:
	EXERCISES
	ADDITIONAL LIST OPERATIONS
	DOUBLY LUNKED LISTS AND STORAGE MANAGEMENT:
	INTRODUCTION
	BINARY TREE:
	BINARY TREE TRAVERSAL:
	Iterative Inorder Treaversal
	THREADED BINARY TREES:
	BINARY SEARCH TREE ALGORITHM:
	BINARY TREE SEARCH:
	FORESTS
	Transforming a Forest into a Binary Tree
	UNIT – IV GRAPHS
	Definitions
	Adjacency Matrix
	Adjacency Lists
	Adjacency Multilists
	Weighted Edges
	ELEMENTRY GRAPH OPERATIONS
	Depth First Search:
	MINIMUM COST SPANNING TREES
	Shortest – Path Algorithm:
	Algorithm:
	Kruskal’s Algorithm
	UNIT – V
	INSERTION (A,N)
	7.6 HEAPSORT
	HASHING HASH TABLES:

